Brian Greene

Brian Greene
Brian Randolph Greeneis an American theoretical physicist and string theorist. He has been a professor at Columbia University since 1996 and chairman of the World Science Festival since co-founding it in 2008. Greene has worked on mirror symmetry, relating two different Calabi–Yau manifolds. He also described the flop transition, a mild form of topology change, showing that topology in string theory can change at the conifold point...
NationalityAmerican
ProfessionScientist
Date of Birth9 February 1963
CityNew York City, NY
CountryUnited States of America
When general relativity was first put forward in 1915, the math was very unfamiliar to most physicists. Now we teach general relativity to advanced high school students.
The absolute worst thing that you ever can do, in my opinion, in bringing science to the general public, is be condescending or judgmental. It is so opposite to the way science needs to be brought forth.
Supersymmetry is a theory which stipulates that for every known particle there should be a partner particle. For instance, the electron should be paired with a supersymmetric 'selectron,' quarks ought to have 'squark' partners, and so on.
Black holes provide theoreticians with an important theoretical laboratory to test ideas. Conditions within a black hole are so extreme, that by analyzing aspects of black holes we see space and time in an exotic environment, one that has shed important, and sometimes perplexing, new light on their fundamental nature.
For most people, the major hurdle in grasping modern insights into the nature of the universe is that these developments are usually phrased using mathematics.
Many different planets are many different distances from their host star; we find ourselves at this distance because if we were closer or farther away, the temperature would be hotter or colder, eliminating liquid water, an essential ingredient for our survival.
My emotional investment is in finding truth. If string theory is wrong, I'd like to have known that yesterday. But if we can show it today or tomorrow, fantastic.
Nature's patterns sometimes reflect two intertwined features: fundamental physical laws and environmental influences. It's nature's version of nature versus nurture.
Oftentimes, if you're talking to a seasoned interviewer who asks you a question, they may do a follow-up if they didn't quite get it. It's rare that they'll do a third or fourth or fifth or sixth follow-up, because there's an implicit, agreed-upon decorum that they move on. Kids don't necessarily move on if they don't get it.
Relativity challenges your basic intuitions that you've built up from everyday experience. It says your experience of time is not what you think it is, that time is malleable. Your experience of space is not what you think it is; it can stretch and shrink.
String theory has the potential to show that all of the wondrous happenings in the universe - from the frantic dance of subatomic quarks to the stately waltz of orbiting binary stars; from the primordial fireball of the big bang to the majestic swirl of heavenly galaxies - are reflections of one, grand physical principle, one master equation.
String theory is the most developed theory with the capacity to unite general relativity and quantum mechanics in a consistent manner. I do believe the universe is consistent, and therefore I do believe that general relativity and quantum mechanics should be put together in a manner that makes sense.
General relativity is in the old Newtonian framework where you predict what will happen, not the probability of what will happen. And putting together the probabilities of quantum mechanics with the certainty of general relativity, that's been the big challenge and that's why we have been excited about string theory, as it's one of the only approaches that can put it together.
So many galaxies, so many planets out there in the universe circling so many stars... it just feels like there's a very good chance that there is another Earth-like planet out there that is able to support some kind of life similar to what we're familiar with.