Richard P. Feynman

Richard P. Feynman
Richard Phillips Feynmanwas an American theoretical physicist known for his work in the path integral formulation of quantum mechanics, the theory of quantum electrodynamics, and the physics of the superfluidity of supercooled liquid helium, as well as in particle physics for which he proposed the parton model. For his contributions to the development of quantum electrodynamics, Feynman, jointly with Julian Schwinger and Sin-Itiro Tomonaga, received the Nobel Prize in Physics in 1965...
NationalityAmerican
ProfessionPhysicist
Date of Birth11 May 1918
CountryUnited States of America
Richard P. Feynman quotes about
It is a curious historical fact that modern quantum mechanics began with two quite different mathematical formulations: the differential equation of Schroedinger and the matrix algebra of Heisenberg. The two apparently dissimilar approaches were proved to be mathematically equivalent.
Today, all physicists know from studying Einstein and Bohr that sometimes an idea which looks completely paradoxical at first, if analyzed to completion in all detail and in experimental situations, may, in fact, not be paradoxical.
It is necessary to look at the results of observation objectively, because you, the experimenter, might like one result better than another.
Do not keep saying to yourself, if you can possibly avoid it, 'But how can it be like that?' because you will get 'down the drain,' into a blind alley from which nobody has yet escaped. Nobody knows how it can be like that.
I wanted very much to learn to draw, for a reason that I kept to myself: I wanted to convey an emotion I have about the beauty of the world.
All the evidence, experimental and even a little theoretical, seems to indicate that it is the energy content which is involved in gravitation, and therefore, since matter and antimatter both represent positive energies, gravitation makes no distinction.
It has not yet become obvious to me that there's no real problem. I cannot define the real problem; therefore, I suspect there's no real problem, but I'm not sure there's no real problem.
Once you have a computer that can do a few things - strictly speaking, one that has a certain 'sufficient set' of basic procedures - it can do basically anything any other computer can do. This, loosely, is the basis of the great principle of 'Universality'.
Things on a very small scale behave like nothing that you have any direct experience about. They do not behave like waves, they do not behave like particles, they do not behave like clouds, or billiard balls, or weights on springs, or like anything that you have ever seen.
If I get stuck, I look at a book that tells me how someone else did it. I turn the pages, and then I say, 'Oh, I forgot that bit,' then close the book and carry on. Finally, after you've figured out how to do it, you read how they did it and find out how dumb your solution is and how much more clever and efficient theirs is!
Until I began to learn to draw, I was never much interested in looking at art.
The most remarkable discovery in all of astronomy is that the stars are made of atoms of the same kind as those on the earth.
The thing that doesn't fit is the thing that's the most interesting: the part that doesn't go according to what you expected.
In the Raphael Room, the secret turned out to be that only some of the paintings were made by the great master; the rest were made by students. I had liked the ones by Raphael. This was a big jab for my self-confidence in my ability to appreciate art.